Super Sea Perch
Construction Manual
Table of Contents

Construction Manual Cover .. Page 0 - 1
Table of Contents..0 - 2

Unit 1 Assembly of Subsystem One: The Vehicle Frame .. 1 - 1
 Step 1: Cut the frame parts ... 1 - 2
 Step 2: Create drain holes in vehicle frame ... 1 - 3
 Step 3: Assemble the vehicle frame ... 1 - 4
 Step 4: Assemble the float supports and tighten the frame 1 - 5
 Step 5: Attach the motor mounts to the frame ... 1 - 6
 Step 6: Attach the payload netting .. 1 - 7

Unit 2 Assembly of Subsystem Two: The Thruster Assembly 2 - 1
 Step 1: To test the motors and mark polarity of the terminals 2 - 2
 Step 2: Attach the tether wires to the motors .. 2 - 3
 Step 3: Mounting the propellers on the motors .. 2 - 4
 Step 4: Mount the thrusters on the vehicle frame .. 2 - 5
 Step 5: Waterproof the tether cable ... 2 - 6

Unit 3 Assembly of Subsystem Three: The Control Box ... 3 - 1
 Sea Perch Circuit Diagram .. 3 - 2
 Step 1: Gather the parts for the control box assembly 3 - 3
 Step 2: Prepare the control box .. 3 - 4
 Step 3: Assemble the power cable ... 3 - 5
 Step 4: Wire the push-button switches (vertical thruster controls) 3 - 8
 Step 5: Wire the toggle switches (horizontal thruster controls) 3 - 11
 Step 6: Finish the control box ... 3 - 15
 Step 7: Testing your Super Sea Perch ROV ... 3 - 17

Parts and Tools List .. PL 1
 Parts and supplies ... PL 2
 Tools and batteries ... PL 3
 Websites and accessories ... PL 4
SAFETY CHECKLIST
EACH STUDENT, EVERY TIME!

• Make sure the work space is well ventilated and well lit
• Each student must wear
 • Safety goggles
 • Close-toed shoes
 • Aprons
• Each student must have adequate space while soldering
• Make students put soldering irons in holders while asking questions, inspecting work, taking instruction and helping others
• Students MUST USE A VISE/CLAMP WHEN SOLDERING AND DRILLING!
• Hold solder in solder case to avoid touching lead-based solder and to avoid putting fingers too close to hot iron

It is a very good idea to practice skills such as drilling and soldering BEFORE using them on your vehicle!
UNIT 1
ASSEMBLY OF SUBSYSTEM ONE
THE VEHICLE FRAME

FOR THIS UNIT YOU WILL NEED:

<table>
<thead>
<tr>
<th>Tools</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruler</td>
<td>7 ft. (2.15 meters) of 1/2” PVC pipe</td>
</tr>
<tr>
<td>Marker</td>
<td>10 1/2” PVC elbows</td>
</tr>
<tr>
<td>PVC pipe cutter or saw</td>
<td>10 1/2” PVC T’s</td>
</tr>
<tr>
<td>Phillips Screwdriver</td>
<td>2-15” Plastruct H-beam</td>
</tr>
<tr>
<td>Drill</td>
<td>4 Football Floats</td>
</tr>
<tr>
<td>1/4” drill bit</td>
<td>3 Motor Mounts</td>
</tr>
<tr>
<td>3/32” drill bit</td>
<td>6 #6 x 1/2” Screws</td>
</tr>
<tr>
<td>Vise or clamp</td>
<td>6 #6 washers</td>
</tr>
<tr>
<td></td>
<td>Netting</td>
</tr>
<tr>
<td></td>
<td>Tie Wraps (zip ties)</td>
</tr>
</tbody>
</table>

Time: Unit one requires approximately **2 hours** to complete:
1 class period to cut the PVC pipe and drill the holes
1 class period to assemble the frame, and attach the payload netting and motor mounts.
STEP 1

PURPOSE: Cut the frame parts

MATERIALS:
7’ (2.15m) of 1/2” PVC pipe

TOOLS:
Ruler
Marker
PVC Pipe cutter
(or saw)

PROCEDURE:
1. From a straight end of the pipe measure and cut:
 Two pieces – 2 1/2” or 6.4 cm long
 Two pieces – 4” or 10.2 cm long
 Three pieces – 4 1/2” or 11.4 cm long
 Eight pieces – 1 1/2” or 3.8 cm long
 Four pieces – 5” or 12.7 cm long
 Four pieces – ” – set aside for use in the next step
 Try to cut straight, so that the ends of each piece are square with the sides, but don’t worry if it’s not perfect.
2. You may want to write the length on each piece to keep track.

Pipe Cutting Tips

PVC pipe can be cut in many ways, each of which has its own concerns:

Ratchet Style Pipe Cutters are the easiest and safest option. To open the cutter, pull the handles FAR apart. Then click them closed through the pipe by pumping the handles together and apart.

Non-ratchet Pipe Cutters are a cheaper alternative, but more difficult to use. Place the pipe in the cutter, push down LIGHTLY, and turn the cutter around the pipe slowly, applying light pressure, until it cuts through all the way.

Hack Saws and other saws can cut through PVC, but are the most labor intensive option.

Band Saws are large pieces of shop equipment, and can be very dangerous. Make sure to get your teacher’s permission and supervision before using one.
STEP 2

PURPOSE: Create drain holes in vehicle frame

MATERIALS:
10 1/2” PVC elbows

TOOLS:
- Hand drill or drill press
- 1/4” drill bit
- Vise or clamp

PROCEDURE:

1. Secure a PVC elbow in the vise or clamp.
2. Place the 1/4” drill bit in the drill (or drill press), and drill a hole in the outer corner of the elbow.
3. Repeat for each of the ten PVC elbows.

These holes are meant to let water fill the frame when you put your Super SeaPerch in the water and for the water to drain out when you take the Super SeaPerch out.

Drill Safety:

Drills can be dangerous pieces of equipment, but are very useful if operated properly. Always get your teacher’s permission and supervision before using a drill or other power tool. Always wear safety glasses when using a drill or other power tool.

It is good practice to secure the object you are drilling in a vise or clamp before drilling. This keeps it steady, prevents it from spinning and hurting your hand if the drill should bind, and keeps your fingers away from the drill bit while drilling.

If you do not have a vise or clamp available, push the elbow onto one end of a long (5” or more) piece of PVC pipe, and hold the pipe while drilling the hole. DO NOT drill the elbow while holding it in your hand!
STEP 3

PURPOSE: Assemble the vehicle frame

MATERIALS:
Cut pieces of pipe from step 1
10 1/2” PVC elbows with holes drilled from step 2
4 1/2” PVC T’s

Figure 3: PVC Frame Parts

PROCEDURE:
Assemble the frame using all the PVC parts as shown in Figure 4 below.

Figure 4: Frame Assembly
STEP 4

PURPOSE: Assemble the float supports and tighten the frame

MATERIALS:
- Assembled frame
- 2-15” Plastruct H-beam
- 4 Football Floats
- PVC pipe scraps

TOOLS:
- PVC Pipe Cutter

PROCEDURE:
1. Cut the 2-15” Plastruct H-beam into four 7 1/2” pieces.
2. Cut 3/4” (2cm) pieces of PVC pipe from your scraps.
3. Insert one of the 3/4” (2cm) PVC pipe pieces into the open end of each of the four PVC angles on the top of your vehicle.
4. Insert an H-beam through each of your floats and between each pair of PVC angles.
5. Push all parts of your vehicle frame together HARD, so that H-beams cannot fall out of the PVC angles.

TIP: If you place the vehicle on your work bench and push down hard from all sides, you can squeeze all the frame sections together tightly. Unless you are building a larger frame, or have PVC that remains loose, it is not necessary to glue or screw the joints.
STEP 5

PURPOSE: Attach the motor mounts to the frame

<table>
<thead>
<tr>
<th>MATERIALS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle frame</td>
</tr>
<tr>
<td>3 Motor Mounts</td>
</tr>
<tr>
<td>6 #6 x 1/2” Screws</td>
</tr>
<tr>
<td>6 #6 washers</td>
</tr>
<tr>
<td>Washers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOOLS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marker</td>
</tr>
<tr>
<td>Phillips Screwdriver</td>
</tr>
<tr>
<td>Drill</td>
</tr>
<tr>
<td>3/32” drill bit</td>
</tr>
</tbody>
</table>

PROCEDURE:

1. Hold motor mounts against frame in locations shown in Figure 7. It’s more important to center them between the joints on the pipe than to get the right angle around the pipe.
2. With a marker or pencil, mark vehicle frame through the holes in motor mounts.
3. Using the 3/32” drill bit, drill holes through the marks on the frame.
4. Place washers over the outside of the holes in the motor mounts, and place a screw through each washer and motor mount hole into hole in vehicle frame. If the heads on your screws are large enough that they don’t pass through the holes in the motor mounts, then the washers are optional.
5. Using the screwdriver, LOOSELY attach the motor mounts to the frame. DO NOT over-tighten and strip the holes in the PVC!! You will be removing the motor mounts later anyway to get the motors under them.

Motor angle tips:

For now, don’t worry about what angle your motors mounts are attached at. Since we do not glue the joints in the PVC we can adjust the angle later by simply turning the pipe in its joints using a pair of pliers. For now, it’s easier to drill and attach the motor mounts on the back (outside) of the frame… we’ll turn them in later.

Think about how the angle of the motors affects the performance of the ROV. What angles will get you the best forward and backward thrust? What angles will get you the best turning ability? What is the best compromise for your mission needs?
STEP 6

PURPOSE: Attach the payload netting

MATERIALS:
Netting
Tie wraps (zip ties)
Assembled Vehicle frame

TOOLS:
Scissors
Pliers

Figure 8: Net attached to frame

PROCEDURE:
1. If you wish to paint your vehicle’s frame, do so before attaching netting, and make sure to use waterproof paint.

2. Place the netting underneath the vehicle frame and trim to size with scissors if necessary.

3. Attach the netting to the frame with about 6 to 8 tie wraps (aka. cable ties or zip ties). Pull them tight, using pliers if necessary.

4. Trim off the tie wrap ends with scissors.

5. You have now completed the vehicle frame of your Super SeaPerch ROV!
UNIT 2

ASSEMBLY OF SUBSYSTEM TWO:

THE THRUSTER ASSEMBLY

FOR THIS TASK YOU WILL NEED:

<table>
<thead>
<tr>
<th>Tools</th>
<th>Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drill</td>
<td>Tether wire</td>
</tr>
<tr>
<td>Drill Bit: 3/32”</td>
<td>3 Propellers</td>
</tr>
<tr>
<td>Lead sinkers</td>
<td>Water Electrical tape</td>
</tr>
<tr>
<td>Pliers</td>
<td>Butyl Rubber tape</td>
</tr>
<tr>
<td>Saw</td>
<td>#24 stranded hook up wire, Red</td>
</tr>
<tr>
<td>Marker</td>
<td>#24 stranded hook up wire, Black</td>
</tr>
<tr>
<td>Ruler</td>
<td>12 volt battery</td>
</tr>
<tr>
<td>Scissors</td>
<td>Paper towels</td>
</tr>
<tr>
<td>Soldering Iron and solder</td>
<td></td>
</tr>
<tr>
<td>Phillips Screwdriver</td>
<td></td>
</tr>
<tr>
<td>Eye Protection</td>
<td></td>
</tr>
</tbody>
</table>

Time: Unit 2 requires about **3 hours** to complete:

- 1 class period to solder the tether wires to the motors
- 1 class period to attach propellers, and
- A short amount of time to mount the motors on the frame after the epoxy has hardened
STEP 1

PURPOSE: Test the motors and mark the polarity of the terminals.

<table>
<thead>
<tr>
<th>MATERIALS:</th>
<th>3 motors</th>
<th>12-Volt Battery</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 Alligator clips</td>
<td>2 pieces of wire, red and black</td>
</tr>
<tr>
<td>TOOLS:</td>
<td>Marker</td>
<td></td>
</tr>
</tbody>
</table>

It is necessary to mark the polarity of the motor terminals, since we will not be able to see the polarity markings on the motor housing once we wrap it in electrical tape.

PROCEDURE:

1. Make a pair of test wires: (these are temporary, and will be disassembled for making your control box in unit 3)
 a. Strip 1/4” (7mm) of insulation from both ends of the loose black wire, without cutting the copper threads inside. Connect the black wire to the black alligator clip by twisting or screwing it on. **(NO SOLDER).**
 b. Repeat with the loose red wire and the red alligator clip.
2. Look carefully to see if the terminals on your motors are pre-marked with polarity (+/-). If so, continue with #3, if not, skip to “Trouble Shooting” below.
3. Locate the negative (-) terminal on the motor, and mark the actual terminal with a black marker. Connect the exposed end of the black wire (-) to the negative (-) motor terminal.
4. Mark the positive (+) terminal with a red marker (if available). Connect the exposed end of the red (+) wire to the positive (+) motor terminal.
5. Holding on to the motor, connect the alligator clips to the corresponding (+/-) battery terminals and ensure the motor is in good working order. The shaft should spin rapidly counter-clockwise.
6. Repeat steps 3 through 5 with the other 2 motors. If any motor is not working, get a replacement. Motors should spin COUNTER CLOCKWISE.

TROUBLE SHOOTING: IF you cannot see polarity markings (+ and – signs) near the terminals of the motor, THEN follow this procedure to find the + and – motor terminals:

1. Put a small piece of tape on the motor shaft, so you can easily see it spin.
2. Connect the black wire to one terminal and the red wire to the other, and connect the alligator clips to the proper battery terminals (red on +, black on -)
3. Observe the rotation direction of the motor.
4. If the motor shaft turns **counter-clockwise**, then you have chosen the correct terminals: black wire on negative (-) and red wire on positive (+).
5. If the motor shaft turns **clockwise**, then the wires are reversed. Switch them around and make sure the motor turns counter-clockwise
6. Mark at least one motor terminal with the correct color(s): (-)=black, (+)=red

WARNING - TO AVOID ELECTRIC SHOCK AND SEVERE BURNS:

DO NOT touch exposed wires to the battery terminals.
DO NOT touch the battery terminals with or ANY metal object, especially tools!
STEP 2

PURPOSE: Attach the tether wires to the motors.

MATERIALS:
- 3 Motors
- Tether wire
- Solder

TOOLS:
- Drill
- 3/32” drill bit
- Soldering iron

PROCEDURE:

1. On one end of the tether cable, strip off about 15” (38cm) of the outer sheath, being careful not to nick any of the inner wires. This can most easily be done with an Ethernet cable stripper. If using scissors, use extreme care not to cut the insulation on the inner wires. Using a knife is not recommended.

2. Separate the four twisted pairs in the stripped section, as shown in Figure 15 on the next page. The brown pair is not used, and can be left hanging for now.

3. Thread about 4” (10cm) of twisted pair through the hole in each film cap, and tie a knot INSIDE the cap for strain relief (Figure 16B).

4. Strip about 1/4” (7mm) of insulation from the end of each wire, for all 3 pairs.

5. Take a pair of wires with attached cap, and one of your taped motors. Solder one wire onto each of the two terminals on the motor: colored wire to (+), and white wire to (-). Repeat for each motor and tether wire pair. (Figure 16C).

6. Check that all solder connections are good with the test wires BEFORE moving on to waterproofing. Attach test wires to appropriate wires at the control box end of the tether (Pos to Pos, Neg to Neg). This will also insure that you did not cut any of the inner wire pairs when stripping the outer sheath of the tether.

SEE FIGURES ON THE NEXT PAGE...

Soldering Safety:

Always wear safety glasses when soldering. Most solder is made of lead, which is poisonous. Avoid breathing the fumes, don’t put it in your mouth, and wash your hands after working with it.
Soldering Technique:
If you have not soldered before, have your instructor show you how, and practice on some pieces of scrap wire. For best results, always twist the inner copper threads of a wire together right after you strip off the insulation, so that they don’t fray and break off. Then poke the wire through the hole in the motor terminal, and twist it back around itself to make a good mechanical connection. Apply heat with the soldering iron to get the wire and the terminal up to solder melting temperature. Applying a little solder to the tip of the soldering iron helps transfer heat. Be careful not to get it so hot that you melt any surrounding plastic, or wire insulation. Once the parts are up to temperature, apply the solder wire between the soldering iron and the connection, and melt a small drop of solder onto the connection. Remove the solder wire, but keep the soldering iron on the connection for a moment to allow the solder to “soak in”, then remove the soldering iron. Try to keep the connection still until the solder cools and hardens (turns dull).

<table>
<thead>
<tr>
<th>POSITIVE (+)</th>
<th>NEGATIVE (-)</th>
<th>THRUSTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Green & White</td>
<td>Starboard (right)</td>
</tr>
<tr>
<td>Blue</td>
<td>Blue & White</td>
<td>Port (left)</td>
</tr>
<tr>
<td>Orange</td>
<td>Orange & White</td>
<td>Vertical</td>
</tr>
<tr>
<td>Brown</td>
<td>Brown & White</td>
<td>Not Used</td>
</tr>
</tbody>
</table>
Step 3

PURPOSE: Mounting the Propellers on the Motors

| MATERIALS: | 3 Propellers
| 3 Motors |
| TOOLS: | 3/32” Drill Bit
| Vice |

PROCEDURE:

1. Secure the propeller in the vice and load the 3/32” bit into the drill.
2. Use the drill bit to **very** carefully ream (or widen) out the mounting hole on the propeller so it will fit properly on the shaft of the motor.
3. Test fit the propeller on the shaft of the motor to find the correct fit. The propeller must fit on the shaft of the motor securely enough so it will not fall off during operation. This is called a friction fit or press fit.
4. You can augment the holding power of the friction fit by adding a small amount of the epoxy to the shaft before the fitting the propeller to the shaft.
5. Repeat steps 1 through 4 until all 3 propellers have been fitted.
STEP 4

PURPOSE: Mount the thrusters on the vehicle frame.

MATERIALS:
Assembled thrusters
Assembled frame

TOOLS:
Phillips Screwdriver
Hacksaw or File

| Figure 24: Mounted thrusters | Figure 24.5: Modified mounts |

PROCEDURE:
1. Before mounting the thrusters on the frame they must be modified slightly, part of the mounting flange must be cut in order to accommodate the motors. Cut the mounts to make them look like figure 24.5.

 Using the screwdriver, remove the motor mounts from the frame.

2. Place a thruster inside each motor mount, according to the table below. The motor mount should go over the middle of the motor. Wrap middle section of motors with 7-10 layers of electrical tape where the motor mount will come in contact with the motor. If the motors wiggle when installed, add more layers of electrical tape until the wiggling is gone.

3. Reattach motor mounts to the frame. It’s OK if the motor cans get squeezed a little. Tighten screws just enough to hold the motor firmly, but be careful not to strip the hole in the PVC (tighten screws equally, three turn top, three turns bottom, etc., this will avoid stripping the PVC, and give you a tighter fit). If you do, re-drill the holes on another side of the PVC. It is fine if motor cases look “pinched” between the mount and the PVC.

4. You can now use pliers to turn the PVC that the motors are mounted on to get the motor angles you want. This is a good time to think about thrust, vectors and propulsion. How do the angles of the motors affect the performance of the ROV? What angles will get you the best forward and backward thrust? What angles will get you the best turning ability? What is the best compromise for your mission needs?

*TIP It is easier to mount center thruster first, then mount the two side thrusters

<table>
<thead>
<tr>
<th>POSITIVE (+)</th>
<th>NEGATIVE (-)</th>
<th>THRUSTER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Green</td>
<td>Green & White</td>
<td>Starboard (right)</td>
</tr>
<tr>
<td>Blue</td>
<td>Blue & White</td>
<td>Port (left)</td>
</tr>
<tr>
<td>Orange</td>
<td>Orange & White</td>
<td>Vertical</td>
</tr>
<tr>
<td>Brown</td>
<td>Brown & White</td>
<td>Not Used</td>
</tr>
</tbody>
</table>
STEP 5

PURPOSE: Waterproof the tether cable.

| **MATERIALS:** |
| Completed frame with thrusters
| Butyl Rubber tape
| Electrical tape |

| **TOOLS:** |
| Scissors |

PROCEDURE:

1. Once the thrusters have been mounted, follow the wire pairs from the thrusters, to where they meet inside the tether sheath.

2. Take a small piece (about 1” or 2.5cm) of the butyl rubber tape (aka. monkey dung) and press it over the wire pairs and the sheath.

3. Knead and work it in well, so that it seals both around and between the wires and sheath, preventing water from getting into the tether cable.

4. Wrap electrical tape over the Butyl Rubber tape to keep it from sticking to anything.

5. After water proofing the tether, make a loop in the tether and attach to the vehicle frame with tie wraps (aka. Zip ties). Make sure the tether comes off from the center of the frame to avoid pulling our ROV to one side once in the water. This is “strain relief”, intended to prevent any pulling on the tether cable from pulling on the motors. (Figure 25).

Note: Since butyl rubber tape IS electrically conductive, make sure it DOES NOT touch any exposed wires. If you find that the wires are nicked where you cut the tether cable (exposing the inner copper wire), you must either seal them with electrical tape (if possible), or re-do the wiring for the motors.
UNIT 3
ASSEMBLY OF SUBSYSTEM THREE:
THE CONTROL BOX

For this task you will need:

<table>
<thead>
<tr>
<th>TOOLS</th>
<th>MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldering iron</td>
<td>Control box</td>
</tr>
<tr>
<td>Drill</td>
<td>2 push-button switches</td>
</tr>
<tr>
<td>1/4” drill bit</td>
<td>2 toggle switches</td>
</tr>
<tr>
<td>Nut driver</td>
<td>2 alligator clips with sleeves (one red one black)</td>
</tr>
<tr>
<td>Wire cutter</td>
<td>Fuse cap wire</td>
</tr>
<tr>
<td>Wire stripper</td>
<td>Fuse (10 A slow blow fuse)</td>
</tr>
<tr>
<td>Small Phillips Screwdriver</td>
<td>Speaker wire</td>
</tr>
<tr>
<td></td>
<td>1 loose red wire (#24 stranded hookup wire)</td>
</tr>
<tr>
<td></td>
<td>1 loose black wire (#24 Stranded hookup wire)</td>
</tr>
</tbody>
</table>

Time: Unit 3 requires approximately 6 hours to complete:
- 1 class period to gather parts and prepare the control box (ergonomic design)
- 1 class period to make the power cable
- 1 class period to wire button switches
- 1 class period to wire the toggle (pole) switches
- 1 class period to finish the control box
- 1 class period to test Super Sea Perch in a “dry run” in the classroom

WARNING:
SOLDERING IRONS GET VERY HOT AND CAN CAUSE SERIOUS BURNS. HOT SOLDER MAY SPATTER. WEAR EYE PROTECTION!!! TAKE CARE TO NOT SHORT BATTERIES OR SHOCK YOURSELF!
In this section, you will build the control box for your Sea Perch ROV. Below is a circuit diagram which shows all the electrical connections that will be made. This diagram is a technical representation, to show the connections, but is not drawn to scale, and leaves out everything but the wires and electrical components. You can always refer back to this diagram to understand how and why the wiring should work. The individual steps have their own circuit diagrams, which are simply parts of this complete diagram. They also have wiring diagrams, which will help you understand what the wiring actually looks like.

Figure 26: Sea Perch ROV Circuit Diagram
STEP 1

PURPOSE: Gather the parts for the control box assembly.

MATERIALS:
Control box
2 push-button switches
2 toggle switches (pole switches)
2 alligator clips
1 red alligator clip sleeve
1 black alligator clip sleeve
Fuse cap wire
Fuse (10 A slow blow fuse)
Speaker wire
1 loose red wire
1 loose black wire

PROCEDURE:
1. Find the test wires that you used to test your motors in the previous unit.
2. Remove the alligator clips from the test wires. The alligator clips will be used on
the power cable, and the wires will be used for the control box circuitry.
3. Gather the other parts required for the control box assembly, as shown in the
diagram on the next page:
Figure 28: Parts for the control box assembly.
NOTE: Speaker wire/power cable may be WHITE (instead of brown)

Figure 28a: This is what the Fuse Cap Wire looks like when taken apart, some of these wires may fall apart during transport of the kits. If you find these pieces in your kit, reassemble them in the order shown above.
STEP 2

PURPOSE: Prepare the control box

MATERIALS: Control box

TOOLS: Marker
 Drill
 1/4” drill bit
 Vise or clamp

PROCEDURE:
1. Using the marker, mark the locations of the holes on your control box, as shown (approximately) in Figure 30 below. Make sure holes are at least _" away from edges to allow switches to fit inside. There should be one in the center of the back for the power to come in, one in the center of the front for the tether cable to go out, two on the right hand side of the front for the vertical thruster controls, and two on top for the horizontal thruster controls. Make sure that the holes for the vertical thrusters leave enough room for the switches against the sides of the box. Ask your teacher if you are unsure.
2. Secure the control box in a vise or clamp and drill holes with the 1/4” drill bit in the marked locations.

Figure 29: Control Box
Figure 30: Control Box hole locations
Figure 31: Cables in holes (see steps 3 & 4)
STEP 3

PURPOSE: Assemble the power cable

<table>
<thead>
<tr>
<th>MATERIALS:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Speaker wire (5-10’ long)</td>
<td></td>
</tr>
<tr>
<td>2 alligator clips with sleeves</td>
<td></td>
</tr>
<tr>
<td>Fuse cap wire</td>
<td></td>
</tr>
<tr>
<td>Solder Electrical tape</td>
<td></td>
</tr>
<tr>
<td>Loose red wire</td>
<td></td>
</tr>
<tr>
<td>Loose black wire</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOOLS:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Soldering iron</td>
<td></td>
</tr>
<tr>
<td>Wire cutter</td>
<td></td>
</tr>
<tr>
<td>Wire strippers</td>
<td></td>
</tr>
<tr>
<td>Small scissors</td>
<td></td>
</tr>
<tr>
<td>Vise or clamp</td>
<td></td>
</tr>
</tbody>
</table>

In this step you will build the power cable for your control box. **A wiring diagram of the finished power cable is show in Figure 33.**

PROCEDURE:

1. Cut about 3” (7.5cm) of wire off of the end of the red and black loose wires. Set these short pieces aside for a later use with the toggle switches.
2. Cut the remaining red and black wires into four equal length pieces each (4 black and 4 red). If your pieces will be less than 5” (12.5cm), then ask your instructor for extra wire.
3. Strip about 1/4” (6mm) of insulation from each end of each piece. Twist the inner wires (strands) on each end to prevent fraying and breaking.

![Power Cable wiring diagram](image)
4. Take one end of each of the four red wires and twist them all together, as shown in Figure 34 below.

5. Do the same with the black wires. These spliced wire bundles will distribute power in your control box.

![Figure 34: Spliced wire bundles](image)

6. Find the power cable (speaker wire), and determine which side of it is positive and which is negative. Notice that there are two conductors inside, each with its own insulation, and attached to each other with a thin web of insulation material. Usually the insulation on one side is ribbed (like corduroy) and the other is smooth. Other times, one is marked with white or black stripes, or other indicators. We will call the ribbed or marked side the positive (+) side.

7. On each end of the speaker wire (power cord), carefully separate the two conductors for about 1” (2.5cm). This is best done by snipping the thin web of plastic between the wires with a small pair of scissors, or a fine pair of wire cutters. Be careful not to nick the insulation on the conductors.

8. On one end of the power cord, leave the separated section only 1” (2.5cm) long. On the other end, pull the two wires apart for about 14” (35cm).

9. On the part of the cord that you just separated, find the positive (ribbed or marked) side and cut off 13” (33cm) of the positive wire. This section will be replaced with the fuse cap wire, as shown in Figure 35 below.

![Figure 35: Battery end of the power cable.](image)
10. Strip 1/2” (1.3cm) of insulation off both ends of the fuse cap wire. The fuse cap wire does not have a positive and negative side… it will work either way.

11. Strip 1/2” (1.3cm) of insulation off of all four ends of the power cord (speaker wire). Twist the conductor strands on each end together to prevent fraying and breaking.

12. Attach the fuse cap wire to the positive (ribbed/marked) side of the speaker cable, (where you cut off the 13”/33cm piece). Twist the wires together, solder the connection, and cover it with electrical tape.

13. Slide the red alligator clip sleeve onto the loose end of the fuse cap wire, and the black alligator clip sleeve onto the negative side of the power cord.

14. Attach alligator clips to the fuse cap wire (+), and to the negative side of the power cord (-). Stick the wire in through the back of the clip, and up through the hole near the screw. Loosen the screw and wrap the wire around it clockwise. Tighten the screw. You can solder the connection if you want to. At this point, your power cable should look like Figure 35.

15. Push the sleeves down over the alligator clips and put the fuse into the fuse cap.

16. **Pass the loose end of the power cable (no alligator clips) through the hole in the back of your control box.** Tie a strain-relief knot about 6” (15cm) up the cord, inside the control box. (Fig. 31)

17. Take the spliced bundle of 4 red (+) wires, and twist the bundled end onto the positive (ribbed/marked) side of the speaker wire. Take the spliced bundle of 4 black (-) wires and twist the bundled end onto the negative (smooth) side of the speaker wire. Solder the connections and cover them with electrical tape, as shown in Figure 36. **ALWAYS USE A VISE OR CLAMP TO HOLD WIRES WHEN SOLDERING!**

![Figure 36: Wire bundles soldered to end of power cord.](image1.png)

![Figure 37: Completed power cable assembly (without the control box).](image2.png)
STEP 4

PURPOSE: Wire the push-button switches (vertical thruster controls)

MATERIALS:
2 button switches
Solder
Prepared control box
Assembled power cable

TOOLS:
Soldering iron
Vise or clamp

Figure 38:
Vertical thrusters with tether wire and power connections.
(Note: The switches in this photo are wired using the old method. The wiring described below will look slightly different.)

PROCEDURE:

1. Refer to Figures 39 and 40 on the following pages for a circuit diagram and wiring diagram for the vertical thruster controls (the pushbutton switches).
2. Pull the end of the tether cable through the hole in the front of the control box. Tie a strain-relief knot about 8” (20cm) down the cable, inside the box.
3. Strip about 6” (15cm) of sheath off of the tether cable, being very careful not to nick the insulation on the inner wires.
4. Separate the four twisted pairs. We will be using the orange pair for the vertical thruster, so wrap up the others for now so they are out of the way.
5. Locate the terminal labels above the wire terminals on each switch. “C” stands for common, “NO” stands for normally open, and “NC” stands for normally connected.
6. Take one of the red (+) wires from your power cord (inside the control box), and twist it onto the NO terminal of one of the pushbutton switches. Repeat for the other switch.
7. Twist the two black (-) power wires to the NC terminals on the two pushbutton switches. (ONE black wire to each switch—See Fig 40 on next page)
8. Now take the orange wire pair from the tether cable and untwist the pair for about 2” (5cm). Strip 1/8” to 1/4” (3-6mm) of insulation off the end of both the orange wire and the white & orange wire.
9. Twist the orange (+) wire to the C terminal on ONE of the switches. (This switch will move the Super sea perch downward.)
10. Twist the white & orange (-) wire to the C terminal on the other switch. (This switch will move the Super sea perch upward.)
11. Once you have attached all the wires to the switches, ask your teacher to check your wiring, as it’s much easier to correct it before you solder.
12. Solder the connections on the three terminals on each switch, being careful not to create any solder bridges between the terminals, and making sure to snip off any frayed pieces of wire sticking out toward other wires.

Figure 39: Vertical thruster circuit diagram.

*TIP It can be useful to pre-mark switches for students
Figure 40: Vertical thruster control / pushbutton switch wiring diagram.
STEP 5

PURPOSE: Wire the toggle switches (horizontal thruster controls)

MATERIALS:
2 pole switches
Prepared control box
Solder

TOOLS:
Soldering iron
Vise or clamp

PROCEDURE:

1. Refer to Figures 45 and 46 on the following pages for a circuit diagram and wiring diagram for the horizontal (port & starboard) thruster controls (the toggle switches).

2. Before you solder anything on the toggle switches, attach ALL the wires by wrapping them through and/or around the terminals. Since some of the terminals have more than one wire connected to them, it is best to solder at the end, when ALL the wires are attached.

3. Cut four 1.5” (3.5cm) pieces of wire from either the small pieces wire you saved in an earlier step, some pieces of the brown tether wire, or other scrap wire. Strip 1/8” to 1/4” (3-6mm) of insulation off all of the ends.

4. Attach one of these pieces across the opposite corner terminals of each pole switch, making an “X” wiring pattern, as shown in Figure 42.

Switch Soldering Tips:
When soldering the switches, be very careful to avoid shorting out the many wires which end up in close proximity in the back of the switch. Attach all of the wires to the switch before soldering anything. Make sure that the wire strands are well twisted together, to avoid fraying strands that may short out against other wires or terminals. Solder quickly, so that the wires do not get too hot, and melt their insulation. Do not use too much solder, which could stick out and touch other connections.
5. The pole switch terminals are arranged into 2 columns with 3 terminals in each column. Use the RIGHT column for positive (+) connections, and use the LEFT column for negative (-) connections.

6. Un-twist about 2" (5cm) of the blue and green tether wire pairs. Strip 1/8" to 1/4" (3-6mm) of insulation off of each wire end.

7. Attach the **green** (+) wire to the right corner terminal on your first pole switch. Attach the **white and green** (-) wire onto the terminal adjacent to it, as shown in Figure 43. Repeat with **blue** wires for the second switch.

8. Attach one **red** (+) power wire to the middle terminal of your first switch, on the same side as the solid-colored wire. Attach a **black** (-) power wire to the middle terminal on the other side, as shown in Figure 44. Repeat for the other switch.
9. Once all of the wire connections are made, check that the connections are clean, without fraying wire strands or other short circuits. Have your teacher check your wiring, and then carefully solder all of the connections on both toggle switches.
10. After soldering the connections, go back and check again that there are no shorts (touching wires or solder) between the switch terminals. If you find a short, de-solder and re-do it before continuing.

Figure 45: Circuit diagram for horizontal (port & starboard) thruster controls.
Figure 46: Toggle switch/Port and Starboard thruster wiring diagram
STEP 6

PURPOSE: Finish the control box

| **MATERIALS:**
| Control box
| Wired Switches
| **TOOLS:**
| Phillips Screwdriver
| 5/16” Nut driver or Pliers

Figure 47: Completed control box

PROCEDURE:

1. Place the pole switches in corresponding holes in the control box. Check the direction that the switches move the motors before securing them into place, (ex. Pressing forward will make the ROV move forward, etc.) Tighten into place with a nut driver or pair of pliers.

2. Remove the red button caps from the button switches by pulling up hard on the red caps. Be careful not to break the white stem.

3. Place button switches through the 2 holes next to the tether cable. Again, check the direction of the switches before securing into place. Tighten with nut driver or pliers. Replace the red button caps by pushing them on very snugly.

Figure 48: Control box with toggle switches and then all switches installed.
4. Screw the back onto the control box using the screwdriver.
5. Place the fuse in the fuse holder.
6. Congratulations, you have completed your Super Sea Perch ROV! (Figure 49).

NOTE: The direction of the forward/reverse thrusters will affect the efficiency of your Super Sea Perch. Play around with the direction of your thrusters when you test your Sea Perch to see what works the best!

Figure 49: Finished Super Sea Perch ROV
STEP 7

PURPOSE: Testing your Super Sea Perch ROV

MATERIALS:
Completed ROV

TOOLS:
12 volt battery

Figure 50: Completed Super Sea Perch ROV

The first time you power-up you Super Sea Perch ROV, there are a few steps you should take to make sure everything is working properly:

1. Before beginning, make sure that you have a good fuse installed, and that all of the switches on your control box are turned off – pushbutton switches are not pressed, and toggle switches are in the center position.
2. The first time you attach the power cable to the battery, clip the black (-) alligator clip onto the Negative (-) terminal on the battery. Then, quickly tap the red (+) alligator clip against the Positive (+) terminal on the battery. You should NOT get a large spark when you do this. A tiny spark is ok, but a large spark indicates a possible short in your system. A short circuit can wreak havoc on your Sea Perch, as it may cause wires to heat up and melt, in the control box, or worse, inside the tether cable or the motors.
3. If you do get a large spark, check that your switches are all off, and try again. If you still get a large spark, unclip the black alligator clip from the battery, use a multi-meter to find where the short is in your system, and fix the short. The circuit diagram at the beginning of this section, and the wiring diagrams in the previous steps are good references for troubleshooting.
4. Once you have confirmed that there are no initial shorts, clip both alligator clips onto their corresponding battery terminals. Quickly tap the switches (rapidly on
and off) one at a time, and listen if a motor turns each time you do. If all of the switches satisfactorily engage a motor, then your system is ready to run. If a motor does NOT turn when you activate each switch, you have either a broken connection (blown fuse, unclipped battery, broken wire, broken solder joint, etc.), or you have a short circuit somewhere.

5. Turn on each motor one by one, and check that it is turning in the correct direction. If not, the easiest way to fix this is to physically re-position the switch in the control box. This is usually simpler than re-soldering the wires.

You are now ready to run your Sea Perch ROV!

To run the Super Sea Perch, clip the alligator clips onto the corresponding terminals on the battery (red +, black -). Be careful not to short the battery. If the Super Sea Perch stops working, first check the fuse to see if it has blown.

Place the Super Sea Perch in the water and attach weights to the payload netting until it has just slightly positive buoyancy, meaning that it sits in the water with the floats just out of the water by about 1/4” (5mm) or less. A typical Super Sea Perch without cameras or other sensors on board usually requires about 4 to 10 ounces (125 to 300 grams) to achieve proper buoyancy. If your Super Sea Perch sinks without applying the downward thruster, it is too heavy. If your Super Sea Perch has trouble diving, or floats up to the surface very quickly, then it is too light.

The motor angles can be adjusted for optimal thrust, maneuverability, or stability, as described in Unit 1.

*Make sure to charge your battery after using it. Lead-acid batteries will last much longer if they are not left discharged. *

Always make sure to rinse your Super Sea Perch with fresh water when you have finished operating it. Pay special attention to the motor shafts as they are often the first place to rust. Clean all seaweed and other buildup off of the motor shafts, and rinse them well with fresh water.

The Sea Perch website (http://seaperch.mit.edu) has many resources and ideas for using Sea Perch ROVs for fun and education. Don’t forget to take some photos of your expeditions. If you send them to us, we may be able to put them on the website!

Remember to be safe when working around the water.

Have Fun!